The General AntiParticle Spectrometer

Cosmic Frontier Workshop, SLAC
March 2013

Philip von Doetinchem
on behalf of the GAPS collaboration
Space Sciences Laboratory, UC Berkeley
doetinchem@ssl.berkeley.edu
www.gaps.ssl.berkeley.edu
Antideuterons and dark matter

- Antideuterons are the most important unexplored indirect detection technique

- Uncertainties:
 - Dark matter:
 - Concentrated in halo, dominant uncertainty from propagation: factor ~10
 - Antideuteron coalescence: factor ~2
 - Boost factors
 - Background: production in galactic disk dominant uncertainty from production cross-section
Sensitivity to dark matter models

- different scenarios give antideuteron fluxes within sensitivity: Supersymmetry, extra dimensions

- GAPS is very effective to search for light WIMPS such as proposed to explain DAMA/LIBRA/CoGENT results
Primordial black holes and gravitinos

- **primary black holes:**
 - very small black holes could have formed in the early universe due to, e.g., initial density inhomogeneities
 - might evaporate antideuterons and **maybe the only chance to detect primordial black holes**

- **baryon asymmetry/cosmological gravitino problem:**
 - hypothetical mediator of gravity: graviton \rightarrow superpartner gravitino
 - late decays of unstable gravitinos to standard particles would produce antideuterons
Observational challenges

Antideuteron measurement with balloon and space experiments requires:

- strong background suppression
- long flight time and large acceptance
- geomagnetic location of experiment

![Graph showing flux ratios vs. energy](image1.png)

![Map showing geomagnetic cut-off](image2.png)
Novel approach for antideuteron identification

- antideuteron slows down and stops in material
- large chance for creation of an excited exotic atom \((E_{\text{kin}} \sim E_i)\)
- deexcitation:
 - fast ionisation of bound electrons (Auger) → complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+antideuteron) deexcites via **characteristic X-ray transitions**
- nucleus-antideuteron annihilation: **pions and protons**
- exotic atomic physics understood (tested in KEK 2004/5 testbeam)
The GAPS experiment

- the **General AntiParticle Spectrometer** is especially designed for **low-energy antideuterons**
- identification by stopping them in the tracker and creating an exotic atom
- (ultra) long duration balloon flights from Antarctica starting from 2017 (begin of solar minimum)
AMS comparison

AMS on ISS since 05/2011

- AMS is a multi-purpose particle physics detector using subsequent detectors and a magnetic field
- AMS antideuteron analysis challenges: geomagnetic cut-off, multiple scattering
- if AMS detects \bar{d}: confirmation is needed
 if no detection: GAPS goes deeper
- different detection techniques are very important for rare event search
- building GAPS right now is important for timely comparison
Prototype GAPS

Goals:
- demonstrate stable operation of the detector components during flight
- study Si(Li) cooling approach for thermal model
- measure background levels

Ph. von Doetinchem

GAPS

March 13 - p9
pGAPS launch

preparations
4:36am

release of balloon

4:55am
take off

return to the harbor 1:05pm

raw Tof trigger rate vs. altitude
Detector operation

- **carry out in-flight calibration of Si(Li) detectors**
 - run X-ray tube
 - time: 50min
- **trigger on Si(Li) detectors to study incoherent X-ray background**
 - time: 29min
 - Si(Li) shows stable X-ray operation
- **well defined TOF trigger and tracker runs**
 - time: 245min
 - ~600,000 triggers
 - stable response of TOF and Si(Li)
 - at float ~5% α particles
 - more flux analysis ongoing
- **NIM instrument paper submitted [arXiv:1303.XXXX]**
 - flight paper to be submitted soon

Ph. von Doetinchem

GAPS

March 13 - p11
Thermal model

- Si(Li) detectors were cooled down to -46°C to ensure operation during flight.
- In addition, bGAPS flight representative radiator and cooling pipe system tested.
- Unfortunately: rotator failure → detectors warmed up (64% still depleted by the end of the flight).
- **BUT** all critical parts were equipped with temperature sensors and the thermal model was verified.
- Cooling approach would have worked with correct pointing.
Si(Li) detector production

- GAPS will use 2875 4” Si(Li) detectors
- 2”-diameter detectors being produced at Columbia U. using simple fabrication scheme
- successfully drifted diameters from 1” to 2” with >90% yield, both 1 mm (prototype) and 2.5 mm thick
- leakage current ~1nA at -35 C
- confirmed performance with cosmic rays (MIPs) and Am-241 source (X-rays)
- FWHM at 59.5keV: 5keV easy to improve with better mounting and preamp board
- 4” detector development underway!

X-rays from Am-241

active area: 1.25” diameter
copper-alloy pressure contact
guard ring
preamp
Timeline for GAPS

- **2000** first idea
- **2004/05** KEK beamtests with antiprotons
- **2006-08** design work
- **2008-12** technical validation
- **2009-12** prototype flight from Japan
- **2013-2017** detailed design and construction
- **2017** first science flight from Antarctica

Columbia University, UC Berkeley, Lawrence Livermore National Laboratory, Japan Aerospace Exploration Agency, UC Los Angeles, U Hawaii

pGAPS team before launch
Conclusion

• measurement of antideuterons is a promising way for indirect dark matter search

• GAPS is specifically designed for low-energetic antideuterons

• all goals for prototype GAPS were met

• Si(Li) detector production understood

• it is the right time to start building GAPS to compare to AMS and direct searches
Uncertainties

- dark matter antideuterons:
 - dark matter concentrated in halo
 - dominant uncertainty from propagation
- conventional antideuterons
 - production in galactic disk
 - dominant uncertainty from production cross-section

propagation:
- parameters not completely fixed
- larger diffusion sizes seem to be favored (median or best model) \(\rightarrow\) flux increases

nuclear:
- antideuterons can be formed by \(\bar{p}-\bar{n}\) pair if coalescence momentum \(p_0\) is small

\[
\gamma \frac{d^3 N_{\bar{d}}}{dp_{\bar{d}}^3} = \frac{4\pi}{3} P_0^3 \left(\gamma \frac{d^3 N_p}{dp^3} \right)^2; \quad \frac{d^3 N_i}{dp_i^3} = \frac{1}{\sigma_R} \frac{d^3 \sigma_i}{dp_i^3}.
\]
- literature discusses values from 80-240MeV (better models, collider input needed)
- dominant production at low energies: \(p+p \rightarrow \bar{d}+X (>17\text{GeV})\) and \(\bar{p}+p \rightarrow \bar{d}+X (>7\text{GeV})\)
Si(Li) detector production

• GAPS needs ~3000 individual Si(Li) detector modules (4" diameter, 2mm thick)
• production technique well understood:
 – 2" diameter detector delivers good muon and X-ray resolution (close to the desired 3keV FWHM at 59.5keV)
 – low leakage currents
• ready to start building 4" detectors

Production technique:

1) cut from the ingot
2) cut groove with ultrasonic grinder
3) evaporate Lithium on surface
4) drift the Li into the silicon
5) make strips and guard ring
6) etch the back (shallow well) and evaporate Au