Recent AGN Observations by STACEE

(Solar Tower Atmospheric Cherenkov Effect Experiment)

John Kildea McGill University, Montréal,

on behalf of the STACEE collaboration

The Solar Tower Atmospheric Cherenkov Technique

A Cherenkov light collector

- detect $\gamma\text{-rays}$ by sampling the Cherenkov wavefront
- Albuquerque, New Mexico

Why use a Solar Tower?

- Low energy threshold
 - heliostats provide mirror area
 - STACEE total mirror surface \simeq 2400 m² (\sim 100 m² for IACT)
 - energy threshold in \sim 100 GeV range

STACEE Observations 2003/2004

- STACEE observes in ON/OFF mode
 - typically 28 mins ON source followed by 28 mins OFF source
 - OFF-source data used for hadronic background quantification

Summary of 2003/2004

• Hardware: stable detector

- complete with 64 heliostats and 64 FADCs

- Data Analysis: significant progress
 - using full power of FADC data

- improved core/energy reconstruction and padding analyses

- WComae: upper limits publication — Scalzo et al., ApJ, 607:778-787 (2004)
- 3C 66A: ~17 hours of clean on-source data — preliminary result from data analysis
- H1426+428: ~23 hours of clean on-source data — preliminary result from data analysis
- Markarian 421: ~ 8 hours of clean on-source data — detected in high state, Spring 2004

Event Reconstruction

- Core location using two independent methods
 - early work encouraging, resolution of \sim 19 m for γ -rays
 - study ongoing using simulations and real data
- Gamma/hadron separation and spectral analysis
 - under development
 - improvement in sensitivity expected using new techniques

WComae Upper Limits

• Background:

— an EGRET blazar, hard (α = 1.73) spectrum (undetected by IACTs)

• STACEE Dataset:

- 10.5 hours of on-source data

- Results:
 - flux upper limits above 100 GeV for leptonic models, above 150 GeV for hadronic models (lowest yet for WComae)
 - strongly constrain EGRET power law extrapolation
 - upper limit below SPB 2 hadronic model prediction
- Further details:
 - Scalzo et al., ApJ, 607:778-787 (2004)

SPB model: Mücke & Protheroe 2000; Aharonian 2000; Mücke et al., 2003

WComae Upper Limits

Figure: Scalzo et al. 2004

<u>3C66A</u>

- Background:
 - EGRET detected LBL, z=0.444
 - detection reported by Crimean Astrophysical Observatory Neshpor et al., (1998)
- STACEE Dataset:
 - 16.9 hours of on-source data
- Preliminary results:
 - on-source excess at 2.81 σ
 - 1.53 γ /min
- Further details:
 - Bramel et al., poster at this conference

<u>H 1426+428</u>

• Background:

- extreme HBL, weak VHE source detected by IACTs

- soft spectrum, spectral index of 3.5 (Petry et al., 2002)

• STACEE Dataset:

- 7.5 hours of on-source data (2003)
- 15.1 hours of on-source data (2004)

• Preliminary results:

- on-source excess at 2.9 σ (2003)
- on-source excess at 1.1 σ (2004)
- combined on-source excess at 2.5 σ (1.34 γ /min)

Markarian 421 – Preliminary Results

— 7.9 hours on-source, combined significance of 5.9 σ

Current/Future Work

- Hardware: pre-amplifier upgrade (2004)
 - move FADCs closer to PMTs, operate with lower energy threshold
 - faster, cleaner system
- Data analysis: gamma/hadron separation (continuous)
 - fully exploit FADC information
 - spectral analysis
- Observations: AGN, pulsars, GRBs, others
 - observations to continue until (at least) mid-2006
- Outlook: good!
 - large dataset
 - analysis continuously improving
 - new pre-amps, lower energy threshold