Observations of the Crab Nebula and Pulsar

with

the Solar Tower Atmospheric Cherenkov Effect Experiment

John Kildea McGill University, Montréal,

on behalf of the STACEE Collaboration

STACEE Crab Nebula/Pulsar Observations

- Previous STACEE observations (1998, 1999)
 - 6.8σ detection in 42 hours on-source (Oser et al., 2001)
 - 32-heliostat detector

Motivations for present observations

(a) characterize new detector/analysis, now 64 heliostats(b) search for Crab Pulsar(c) differential Crab Nebula spectrum down to 100 GeV

• Dataset (21.2 hrs total)

- equal amounts of off-source data

• ON/OFF brightness differences

- accounted for offline using padding procedure

 All heliostats point toward expected shower location — maximizes light collected, good for dim showers

 Some point at expected shower location, some parallel — provides core information, superior reconstruction

Shower Reconstruction and Gamma/Hadron Separation

Event Reconstruction – Shower Direction

— gamma rays from source, have small values of θ

Gamma/Hadron Separation – Shower Direction

— θ is a good gamma/hadron separation parameter for STACEE

Gamma/Hadron Separation – Shower Direction

Direction Reconstruction

• Crab Nebula data (ON-OFF distribution)

— Clear excess at low heta

^{*} Bruel, P., et al., 2004, Proceedings of Frontier Science 2004, Physics & Astrophysics in Space

- of course, we don't know where the shower max is!

Gamma/Hadron Separation – Grid Alignment

- Distribution of H/W for each grid point
 - peak provides core location

Gamma/hadron separation

- distribution very different for gamma rays and protons
- gamma-ray pulses quickly fall out alignment away from shower max
- parameterize shape of H/W distribution as grid ratio, $\{\frac{(H/W)_{200m}}{(H/W)_{max}}\}$

Gamma/Hadron Separation – Grid Ratio

Simulated data

- Grid ratio is a good gamma/hadron separation parameter for STACEE

Gamma/Hadron Separation – Grid Ratio

GridRatio Population 1000 n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 0 GridRatio [(H/L)_{200m}/(H/L)_{max}]

Crab Nebula data (ON-OFF distribution)
— Clear excess at small values of the grid ratio

Crab Nebula Results

Cut	No. ON	No. OFF	ON-OFF	σ	γ Rate (min $^{-1}$)			
2002-2003								
Raw	165773	164341	1432	2.6	$\textbf{3.3} \pm \textbf{1.30}$			
Re-trigger	137923	136237	1686	3.4	$\textbf{3.9} \pm \textbf{1.20}$			
Re-trigger + Direction	41440	40652	788	2.8	$\textbf{1.8} \pm \textbf{0.67}$			
Re-trigger + Grid Ratio	4452	3989	463	5.1	$\textbf{1.1} \pm \textbf{0.21}$			
2003-2004								
Raw	290770	288641	2129	2.4	$\textbf{2.5}\pm\textbf{0.89}$			
Re-trigger	231269	228932	2337	3.1	$\textbf{2.7} \pm \textbf{0.79}$			
Re-trigger + Direction	75031	72818	2213	5.5	$\textbf{2.6} \pm \textbf{0.45}$			
Re-trigger + Grid Ratio	14331	13405	926	5.5	$\textbf{1.1}\pm\textbf{0.19}$			

 All cuts applied directly from simulations (E_{th} ~ 170 GeV) — no optimization at this stage

Crab Nebula Results

Cut	No. ON	No. OFF	ON-OFF	σ	γ Rate (min $^{-1}$)			
2002-2003								
Raw	165773	164341	1432	2.6	$\textbf{3.3} \pm \textbf{1.30}$			
Re-trigger	137923	136237	1686	3.4	$\textbf{3.9} \pm \textbf{1.20}$			
Re-trigger + Direction	41440	40652	788	2.8	$\textbf{1.8} \pm \textbf{0.67}$			
Re-trigger + Grid Ratio	4452	3989	463	5.1	$\textbf{1.1} \pm \textbf{0.21}$			
2003-2004								
Raw	290770	288641	2129	2.4	$\textbf{2.5}\pm\textbf{0.89}$			
Re-trigger	231269	228932	2337	3.1	$\textbf{2.7} \pm \textbf{0.79}$			
Re-trigger + Direction	75031	72818	2213	5.5	$\textbf{2.6} \pm \textbf{0.45}$			
Re-trigger + Grid Ratio	14331	13405	926	5.5	$\textbf{1.1}\pm\textbf{0.19}$			

- All cuts applied directly from simulations (E_{th} ~ 170 GeV) — no optimization at this stage
- Improved direction reconstruction for paracanted data — as expected according to simulations

Crab Nebula Results

Cut	No. ON	No. OFF	ON-OFF	σ	γ Rate (min $^{-1}$)			
2002-2003								
Raw	165773	164341	1432	2.6	$\textbf{3.3} \pm \textbf{1.30}$			
Re-trigger	137923	136237	1686	3.4	$\textbf{3.9} \pm \textbf{1.20}$			
Re-trigger + Direction	41440	40652	788	2.8	$\textbf{1.8} \pm \textbf{0.67}$			
Re-trigger + Grid Ratio	4452	3989	463	5.1	$\textbf{1.1} \pm \textbf{0.21}$			
2003-2004								
Raw	290770	288641	2129	2.4	$\textbf{2.5}\pm\textbf{0.89}$			
Re-trigger	231269	228932	2337	3.1	$\textbf{2.7} \pm \textbf{0.79}$			
Re-trigger + Direction	75031	72818	2213	5.5	$\textbf{2.6} \pm \textbf{0.45}$			
Re-trigger + Grid Ratio	14331	13405	926	5.5	$\textbf{1.1} \pm \textbf{0.19}$			

- All cuts applied directly from simulations (E_{th} ~ 170 GeV) — no optimization at this stage
- Improved direction reconstruction for paracanted data — as expected according to simulations
- Grid ratio very powerful
 - expect further improvement with optimization

Crab Pulsar Results

- Independent analysis (15 hrs of data)
 PhD thesis of P. Fortin, McGill University
- Pulsed upper limit (at 185 ± 35 GeV)
 16.4% of unpulsed STACEE signal

Conclusions

STACEE Crab Nebula detection

- clear detection in both years with different pointing strategies

- non-optimized cuts

• Crab Pulsar upper limits

- 16.4% of unpulsed signal at 185 \pm 35 GeV
- expect improvement with low-energy event selection (down to \sim 50 GeV)

• Looking ahead...

- spectral analysis underway (see Mkn 421 talk by Jennifer Carson)
- event reconstruction methods look promising
- proceeding systematically (understand cuts, optimize, apply)
- perform analysis on other sources