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The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an atmospheric Cherenkov detec-
tor that detects astrophysical gamma rays using the shower-front-sampling technique. STACEE is a fully
operational detector utilizing 1 GS/s Flash ADCs on all channels, providing important pulse height and tim-
ing information for discriminating betweenγ-ray and hadron events. We discuss shower-front reconstruction
methodologies and gamma/hadron separation techniques that utilize the nanosecond timing and pulse height
information provided by STACEE’s Flash ADCs.

1. Introduction

Ground-based atmospheric Cherenkov telescopes are well suited to the task of Very High Energy (VHE)γ-
ray astronomy (in the energy range from 50 GeV to 50 TeV). Given the non-thermal power-law spectra of
γ-ray emitting sources, a large collection area is vital at very high energies, where the flux of photons dimin-
ishes rapidly. By incorporating the atmosphere as part of the detector, ground-basedγ-ray telescopes offer a
distinct collection area advantage when compared to their lower-energy (below 50 GeV) space-based counter-
parts. Unlike space-based detectors, however, ground-based instruments suffer the lack of an anti-coincidence
shield to guard against background cosmic rays. To overcome this disadvantage, sensitive detection techniques
have been developed that distinguishγ-ray air showers from the large background of air showers induced by
hadronic cosmic rays. We describe here the main shower reconstruction methodologies currently employed
and/or under investigation by the STACEE collaboration for gamma/hadron separation.

2. The STACEE Detector

STACEE is a shower-front-sampling atmospheric Cherenkov telescope that uses the facilities of the National
Solar Thermal Test Facility (NSTTF) in Albuquerque, New Mexico [1]. The NSTTF is a solar power research
facility incorporating a 200 ft central receiver tower and an array of heliostats (solar mirrors). STACEE uses
secondary mirrors, in the central receiver tower, to focus Cherenkov light reflected by the heliostats onto
cameras having a total of 64 photomultiplier tubes. A one-to-one mapping between heliostats and PMTs
allows the Cherenkov shower-front to be sampled independently at 64 different locations in the heliostat field.

STACEE uses a custom-built trigger system to select Cherenkov events from amongst the background of night-
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sky light fluctuations. In the event of a Cherenkov trigger, amplified and AC-coupled signals from the PMTs are
recorded, together with a GPS timestamp, using 8-bit FADCs (one per PMT). The FADCs provide important
temporal and intensity information, at a sampling rate of 1 GS/s, which is fully utilized in the offline analysis
procedure.

A careful investigation of candidate gamma/hadron separation parameters requires extensive use of air shower
and detector simulations. Forγ-ray and hadronic air shower simulations, STACEE uses the CORSIKA package
[2]. Custom ray-tracing and Monte-Carlo algorithms are used to simulate data generation by the telescope.
Measured optical and electronic throughputs are incorporated into the simulations package.

3. Shower Reconstruction

In order to reconstruct the properties of the primary photon, an accurate estimate of the shower core location
is essential. The shower core position on the heliostat field is the point at which the primary would impact,
were it to travel unobstructed through the atmosphere. Three methodologies used by STACEE for shower core
location are described below.

Template Fitting Method The template fitting method, detailed in [3], involves the generation of a large
number of Monte-Carlo simulated charge templates that represent the charge from each PMT under various
conditions. Templates are compiled using showers simulated over a large range of zenith angles, azimuth
angles, and core locations. By finding the template which best matches a particular event, an approximate core
location for that event is obtained. The mean core resolution forγ-rays obtained using this method is about
22 m, when applied to simulatedγ-rays with energies between 20 GeV and 5 TeV generated on a differential
spectrum ofE−2.4.

Early Shower Method The early shower method exploits the temporal profile of aγ-ray shower’s Cherenkov
front. The front of aγ-ray air shower comprises light originating at different heights along the particle cascade
[4]. Light from shower maximum forms the bulk of photons in the shower-front, resulting in a spherical shape
at ground level. However, since particles in the shower travel faster than the Cherenkov light that they produce,
light that is emitted lower down along the shower’s trajectory is detected first, before it has had time to move
far from the core. This results in an apparent distortion of the sphere into a more conical profile. By calculating
the center-of-gravity of the light in the first few nanoseconds of the shower-front, the shower core position can
be accurately determined. Furthermore, given that the light pool at the beginning of the Cherenkov front is
much smaller than that of the complete front, truncation effects, due to the finite sampling area, that otherwise
would impact on the center-of-gravity calculation, are diminished.

By accounting for time-of-flight delays from the heliostats to the PMTs, and by applying a type of software
trigger condition across each nanosecond sample of the FADC traces, the first nanosecond sample of the shower
can be determined. With the beginning of the shower identified, the centre-of-gravity of the first few nanosec-
onds is calculable. The mean core resolution obtained using this method is∼26 m.

Grid Alignment Method The grid alignment method was recently developed by the CELESTE collabora-
tion, [5, 6], and was shown to work well when applied to their data. Since the Cherenkov front originating at
shower maximum is roughly spherical, Cherenkov photons arrive at different heliostats at different times, de-
pending on the heliostat positions relative to the front. A simple sum of the FADC traces provides, as a result,
a pulse that is short and wide. By realigning the traces, however, such that the different propagation times from
shower maximum to the heliostats are fully accounted for, the summed FADC trace will be narrower and have
larger amplitude. Hence, by iterating over a grid of potential shower maximum positions, and calculating the
resultant height to width ratio (H/W ) of the realigned FADC traces for each grid point, the shower maximum
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Figure 1. (Left) Distribution ofH/W values for each point on a grid constructed at shower maximum altitude (12.5 km
a.s.l.), for a simulatedγ-ray air shower. The grid point with the tallest and narrowest summed FADC trace[H/W ]max

corresponds to the best estimate of the shower maximum location. Grid point coordinates correspond to their projection
onto the heliostat field. (Right) Distribution ofH/W values for a simulated proton air shower. The flatness of the proton
distribution compared to the peakedγ-ray distribution can be used as a gamma/hadron discriminant [5, 6].

position can be determined. The grid point with the narrowest and tallest resultant pulse ([H/W ]max) lies
closest to the true shower maximum, figure 1 left. A straightforward projection of the shower maximum point
to ground level provides the position of the shower core.

The core-finding procedure, as developed by CELESTE, is a two step process, whereby a coarse grid is used
to find the approximate shower maximum position, followed by a fine grid around this point to improve the
accuracy. Application of the method in STACEE’s analysis code requires just one step—the fine grid—since
an approximate shower core location is already provided by the template and early shower methods. The mean
core resolution obtained using the combined grid-alignment and early shower methods is∼21 m.

4. Gamma/hadron Separation

Gamma/hadron separation for atmospheric Cherenkov telescopes typically involves selection ofγ-ray-like
events, based on fitted parameters with measurable differences forγ rays and hadrons. Selection cuts for each
parameter are determined using simulations and/or optimization on real data from a known source. At present
two main gamma/hadron separation parameters are employed by STACEE; theshower directionand thegrid
ratio (referred to asξ by the CELESTE collaboration). Both require an estimate of the shower core position.

The shower directionis determined by fitting the measured Cherenkov front for a conical time profile, with
the point of shower maximum as a free parameter. A line from the estimated core position on the ground to
the shower maximum, as determined by the fit, provides the reconstructed direction of the shower. Sinceγ
rays are anticipated from the source direction (center of the field-of-view), an excess of ON-source events is
expected with reconstructed directions close to the center, see figure 2 left. Using the reconstructed direction
alone, STACEE can detect the Crab Nebula with good statistical significance [7].

The grid ratio parameter was developed by the CELESTE collaboration [5, 6], and is closely related to the
grid alignment method for finding the shower core, described above. When correctly realigned for the shower
maximum position, the parameterH/W of the summed FADC traces is at its greatest value. As shown in figure
1,H/W for γ rays falls off rapidly from the shower maximum location, since the FADC pulses quickly fall out
of alignment. For hadrons, however, where the Cherenkov front is not spherical [4] and the pulses are poorly



4 J. Kildea et al.

GRID Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

is
ed

 P
op

ul
at

io
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

GRID Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

is
ed

 P
op

ul
at

io
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

GRID Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

is
ed

 P
op

ul
at

io
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 Gamma-rays
Protons

 (mrad)θ
0 2 4 6 8 10 12

N
or

m
al

is
ed

 P
op

ul
at

io
n

0

0.05

0.1

0.15

0.2

0.25

 (mrad)θ
0 2 4 6 8 10 12

N
or

m
al

is
ed

 P
op

ul
at

io
n

0

0.05

0.1

0.15

0.2

0.25

 (mrad)θ
0 2 4 6 8 10 12

N
or

m
al

is
ed

 P
op

ul
at

io
n

0

0.05

0.1

0.15

0.2

0.25
Gamma-rays
Protons

Figure 2. (Left) Distribution ofθ for γ rays and protons.θ is the angle between the source direction and the reconstructed
shower direction. Gamma rays, from the source at the centre of the field-of-view, have small values ofθ. Bins have equal
area on the sky. (Right) Distribution of the grid ratio parameter forγ rays and hadrons.

aligned to begin with, theH/W distribution is much flatter. The CELESTE group parameterize theH/W fall-
off using the ratio of the averageH/W calculated at a distance 200 m away from shower maximum, toH/W

at shower maximum,{ (H/W )200m

(H/W )max
}. This ratio, referred to here as thegrid ratio, is a powerful gamma/hadron

discriminant for the shower-front-sampling technique. Its power in STACEE simulations is demonstrated in
figure 2, right. Application of agrid ratio cut, determined from simulations, to STACEE Crab Nebula data has
proven quite successful [7].

5. Conclusion

Using FADC data STACEE can locate the core ofγ-ray showers with an accuracy of∼21 m, according to
simulations. Two gamma/hadron discriminators, the reconstructedshower directionand thegrid ratio param-
eters, show great potential in STACEE simulations and have been used to improve STACEE’s detection of the
Crab Nebula [7]. While work on other potential gamma/hadron separation parameters is ongoing, a planned
optimization of theshower directionandgrid ratio selection cuts, using Crab Nebula data, is expected to yield
an improvement in STACEE’s sensitivity for otherγ-ray sources.
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