GAPS - Dark matter search using cosmic-ray antideuterons

Philip von Doetinchem¹, Tsuguo Aramaki², Steven Boggs¹, William Craig³, Hideyuki Fuke¹, Florian Gahbauer²³, Charles Hailey²(Pl), Jason Koglin², Norm Madden², Isaac Mognet¹, Kaya Mori², Reno Ong², Atsushi Takada², Tetsuya Yoshida¹, Tracy Zhang³, Jeffrey Zweerink¹ 10 Gerkeler, Zolumbia Ohversity, Stavenee Livernove Raibana Laboratorv. 4 Jagan Arensaace Exploration Agence, Stuhersity of Latvia, 6 UC Las Angeles

The General AntiParticle Spectrometer experiment is foreseen to carry out a dark matter search using cosmic-ray antideuterons at stratospheric altitudes using a novel detection approach. Dark matter theories predict large antideuteron fluxes at low energies coming from dark matter self-annihilations compared to the flux resulting from secondary interactions of primary cosmic rays with the interstellar medium. GAPS is designed to achieve its goals via a series of (ultra-)long duration balloon flights at high altitude in Antarctica, starting in 2014. To prove the performance of the different detector components at balloon altitudes, a prototype flight (pGAPS) will be conducted in 2011 from Taiki, Japan.

