
Fifth Joint Meeting of the DNP and the JPS
October 2018

 
Philip von Doetinchem 

on behalf of the GAPS collaboration

philipvd@hawaii.edu
Department of Physics & Astronomy

University of Hawai'i at Manoa
http://www.phys.hawaii.edu/~philipvd

Development of the GAPS Development of the GAPS 
Experiment for Cosmic-ray Experiment for Cosmic-ray 
Antinuclei MeasurementsAntinuclei Measurements

http://www.phys.hawaii.edu/~philipvd


P. von Doetinchem           Development of GAPS           Oct 18 – p.2p.

Evidence for dark matter
Bullet cluster
red: hot X-ray emitting gas
blue: distribution of dark matter

• dark matter exists, but nature remains unknown!

• luminous matter cannot describe the structure of the Universe

• evidence for dark matter comes from many different type of 
observations on different distance scales

Abell 1689:
gravitational
lensing

PLANCK CMB
Copyright: ESA and the Planck 

Collaboration

rotation curves

By NASA/CXC/M. Weiss - Chandra X-Ray Observatory: 1E 0657-
56, Public Domain, https://commons.wikimedia.org/w/index.php?
curid=10749247

Rotation curve
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Cosmic rays as dark matter messengers

new physics
new dark 

matter particles
known

particles

cosmic rays from the annihilation of dark matter
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• assumption: cosmic-rays 
from dark matter 
annihilation follow different 
kinematics than 
conventional production

• peak/bump/shoulder on top 
of conventional spectrum 

• use search channel without 
strong conventional 
production: e+, g, p, n

neutrinos
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Kappl et al., JCAP 1510 (2015) 10, 034

Dark matter signal in cosmic rays?

• unexplained feature in positrons:
– astrophysical origin → pulsars

[HAWC excludes some local pulsars]
– SNR acceleration
– dark matter annihilation

• combined fit with antiproton and diffuse gamma-rays 
from the Galactic Center → 80GeV DM particle

• understanding astrophysical background is a 
challenge

• better constraints on cosmic-ray propagation and 
astrophysical production are 
needed

DM model from J. Kopp, Phys. Rev. D 88, 076013 (2013))

 Cuoco et al., JCAP 1710 (2017) 053

antiproton and gamma-ray results

antiproton

AMS-02

positron
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Antideuterons as a probe of dark matter

astrophysical background:
collisions of protons and antiprotons 
with interstellar medium
[Ibarra & Wild, Phys. Rev. D88, 023014 (2013)]

Neutralino: 
SUSY lightest supersymmetric 
particle, decay into bb
[Baer & Profumo, JCAP 0512, 008 (2005), 
Donato et al., Phys. Rev. D78, 043506 (2008)]

late decays of unstable gravitinos 
[Dal & Raklev, Phys. Rev D89, 103504 (2014)]

Examples for beyond-standard-model 
Physics (compatible with p):

more than 
factor 100

Antideuterons are an important unexplored indirect detection technique!

GAPS and AMS sensitivities are based on simulations
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More antideuteron models

Blum et al., arXiv:1709.06507

Tomasetti & Oliva, arXiv:1712.03177

Lin et al., arXiv:1801.00997
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Astrophysical background only:

Dark matter annihilation:

● All antinuclei species 
have to be explained 
together

● Report by AMS-02 of 
antihelium candidates 
triggered more 
theoretical work:
● evaluate propagation 

effects
● nuclear modeling
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(Anti)deuteron formation

• d (d) can be formed by an p-n (p-n) pair if coalescence momentum p0 is small

• use an event-by-event coalescence approach with hadronic generators

dark matter conventional production 
(e.g., p+ISM) & dark matter

Schwarzschild &Zupancic, Physical Review 129, 854 (1963)
Ibarra & Wild, Physical Review D88 020314 (2013)
Aramaki et al., Physics Reports 618, 1 (2016)

 A. Ib arra, S. Wild Phys. Rev. D 88, 023014 (2013)
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Issues of the coalescence model
● coalescence uncertainties are about a 

factor of 10 on the flux

● coalescence is highly sensitive to two-
particle correlations between the 
participating (anti)nucleons (non-
pertubative regime)

● generators not really tuned for 
antiparticle production
→ tune with antiproton, deuteron, and 
antideuteron data
→ test antiproton spectra first, 
antineutron data are hard to come by

● hadronic generators do not include 
coalescence formation
→ added ”afterburner“

Gomez et al., Phys. Rev. D 98, 023012 (2018)

● compared simulation results to available data 
sets (p+p, p+A) → best-fit coalescence 
momentum per data set

● more high statistics data needed to 
constrain (anti)deuteron coalescence model
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Geomagnetic efficiency

● Earth‘s magnetic field deflects charged 
particles depending on charge and 
momentum → not every position on orbit 
sees the same exposure to cosmic rays

● AMS-02 is installed on the ISS (latitude ±52°)

→ understanding of geomagnetic 
environment crucial for low rigidities

● GAPS is planned to fly from Antarctica (~-80°)
→ geomagnetic corrections are minimal

GAPS

AMS-02 TOF
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Identification challenge

Required rejections for antideuteron 
detection:

– protons: > 108 - 1010

– He-4: > 107 - 109

– electrons: > 106 - 108

– positrons: > 105 - 107

– antiprotons: > 104 - 106

Antideuteron measurement with balloon 
and space experiments require:

– strong background 
suppression

– long flight time and large 
acceptance
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The GAPS experiment Columbia U, UCSD
UCLA, UCB, 
U Hawaii, MIT

• the General AntiParticle Spectrometer is specifically designed for low-energy 
antideuterons, antiprotons and antihelium nuclei
• GAPS is under construction → first Long Duration Balloon flights from 

Antarctica flight 2020

mass: ~1,800kg
power: 1.4kW

3m

3.6m
TOF with SiPM readout

~1400 Si(Li)
wafers

More than 1,000 Si(Li) wafers



P. von Doetinchem           Development of GAPS           Oct 18 – p.12p.

Simulated antideuteron in GAPS Incoming 
antideuteron

pion

pion

pion

pion
Before the annihilation, 
an excited exotic atom 
is formed that is 
deexcited by X-rays

Color scale corresponds 
to deposited energy
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Deexcitation X-rays Aramaki et al., Astropart. Phys. 74, 6 (2016)

 antiparticle slows down and stops in material
 large chance for creation of an excited exotic atom 

(E
kin

~E
I
)

 deexcitation:
– fast ionization of bound electrons (Auger) 

→ complete depletion of bound electrons
– Hydrogen-like exotic atom 

(nucleus+antideuteron) deexcites via 
characteristic x-ray transitions depending 
on antiparticle mass
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Hadronic annihilation products

p+p annihilation at rest

● Test of annihilation physics in 
Geant4 is currently ongoing

● Use antiproton data for validation
● Work with Geant4 developers

Number of charged pions for events 
that stop in the GAPS tracker material
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Identification variables

Identification is a task for 
multivariate identification 
techniques:
● Number of tracks from the 

annihilation vertex
● X-rays in association with nuclear 

annihilation products
● Total energy deposition of the 

primary particle
● Column density of material that 

the antiparticle traversed before 
stopping

● Total energy deposition from all 
tracks

● Number of hits in tracker
● Number of hits in TOF

Total energy deposition 
on primary track in TOF 
and tracker
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Event reconstruction

● For the event reconstruction it is critical to identify a well defined 
primary track → b measurement, energy deposition, column 
density

● The primary track is used as a seed for the determination of the 
stopping vertex with the corresponding secondary tracks
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GAPS low-energy antiproton

● GAPS will detect ~1000 antiprotons per 30day flight (order of magnitude more than 
BESS Polar II)

● Antiprotons are essential to:
● Validate the identification technique
● Compare with other experiments
● Estimate antideuteron background

● Antiprotons are sensitive to various DM models: Neutralinos, LZP Gravitinos, primordial 
black holes

as seen by 
1 GAPS 
LDB flight

+ new BESS Polar II 
   data points
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Prototype GAPS [2012]
● demonstrated stable operation of the detector 

components during flight
● studied Si(Li) cooling approach for thermal model
● measured background levels

flight computer
TOF readout

tracker

TOF

tracker

TOF

TOF

tracker
readout

1.2m

bus gondola

X-ray tube

airshower
maxiumum

float

at 33km
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Time of flight

• High-speed trigger and veto

• 160-180cm long, 0.6 cm thick 
• read out both ends with SiPM readout, 

fast sampling with DRS4 ASIC
– < 500ps timing resolution end-to-

end/√2 timing has been 
demonstrated in the lab

• Optimization of trigger is ongoing
–  accepts ~80% of antinuclei while 

reducing proton/alpha rate by 103-
104

• TOF testing and development ongoing: 
– Rev1 testing completed, Rev2 

read out board work has started

Rev1 boardRev1 board
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Tracker

• GAPS will use ~1,000 4” Si(Li) detectors, 2.5mm thick
• Demonstrates required ~4keV energy resolution at relatively high temp of -35 to -45 C
• fabrication scheme developed at Columbia U and MIT, produced by private company 

Shimadzu, Japan
• confirmed performance with cosmic rays (MIPs) and Am-241 source (X-rays)
• Readout via custom ASIC: integrated low-noise preamplifier, dynamic range compression 

20keV to ~100MeV 
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Oscillating heat pipe cooling system

● alternative cooling approach:
● small capillary metal tubes filled with a 

phase-changing refrigeration liquid
● small vapor bubbles form in the fluid 

→ expand in warm sections/contract in cool sections
● rapid expansion and contraction of these bubbles 

create thermo-contraction hydrodynamic waves 
that transport heat.

● no active pump system is required
● development at JAXA/ISAS

space radiator 

Oscillating Heat Pipe

S. Okazaki et al., J. Astr.. Instr. 3 (2014)

2012 prototype
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GAPS path forward

● GAPS is specifically 
designed for low-
energetic antideuterons

● all goals for prototype 
GAPS were met

● currently in finalizing-
design phase

● first GAPS science flight 
from Antarctica 2020

UCLA, March 27-29, 2019
https://indico.phys.hawaii.edu/e/dbar19

GAPS team - Nov 2017
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Backup
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Propagation uncertainty

● propagation is a large uncertainty source for low-energy antideuterons: 
halo size for diffusion calculation is poorly constrained

● antiproton and positron results tend to exclude MIN halo models and 
favor larger halo sizes
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Si(Li) detector development
● Lithium is applied to the front surface of B-doped 

p-type Si and diffused through short depth
● Li atoms donate electrons, resulting in an n-type 

Si lattice layer and leftover free positive Li ions
● under reverse bias, positive Li ions move away from the n-

type region
→ compensate acceptor atoms in the p-type bulk
→ compensate impurities in the Si

● drifting procedure creates a thick compensated region 
(<1.5 days at 500V and 130C)

● ultrasonic machining on the n+(Li) contact → guard ring 
structure, reduces leakage current, much better energy 
resolution

● electrodes are thermal-evaporated ohmic/blocking contacts

Perez et al., NIM A 905, 12 (2018)
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