Antideuterons as an Indirect Dark Matter Signature: Si(Li) Detector Development and a GAPS Balloon Mission

Tsuguo Aramaki Columbia Astrophysics Laboratory

C.J. Hailey (PI), T. Aramaki, J.E. Koglin, N. Madden, K. Mori, H.T. Yu Columbia University

S.E. Boggs

University of California, Berkeley

W.W. Craig

F. Gahbauer

Lawrence Livermore National Laboratory

H. Fuke, T. Yoshida Institute of Space & Astronautical Science, Japan Aerospace Exploration Agency

University of Latvia R.A. Ong, J. Zweerink

University of California, Los Angeles

ORNL

K.P. Ziock Oak Ridge National Laboratory

Our universe is dominated by Dark Matter and Dark Energy

Galactic Rotation Curve

Gravitational Lens

What is Dark Matter?

Lots of theories!

Supersymmetry

4th generation heavy neutrino Axinos Bino Brane world DM CHAMPS Cryptons D-matter Gravitinos Kaluza-Klein Higgsino Light scalars Minimal DM Mirror particles Neutralinos New symmetry little Higgs Q-balls Photino Self-interacting DM Simpzillas SM neutrinos **Sneutrinos** Sterile neutrinos SWIMPS Theory space little Higgs Wimpzillas Wino

Neutralino DM

- Lightest Supersymmetric Particle (LSP) in SUSY theory
 - Stable
- Interacts with matter very weakly like a heavy neutron
 - Underground experiments measure nuclear recoil
 - Underground experiments must be massive 3rd generation experiments ~ 1 ton targets
- The neutralino is a Majorana particle
- It is its own antiparticle and will co-annihilate

There are two different Dark Matter searches

Large scale (~ton) detector is required

Why Antideuterons?

Background free at low energy!

- Primary component: Neutralino annihilation Other DM models eg. Right-Handed Neutrino (LZP) Kaluza-Klein Particle (LKP) Secondary component (Background): Cosmic ray interactions p/\overline{P} (CR) +H/He (IS) $\rightarrow \overline{D}$ +...
- Flux is low, but primary/secondary is large
- High sensitivity with balloon
- Sensitive to other DM models

GAPS searches unique parameter space complementary to other direct/indirect searches

	LDB (60days)	ULDB (300days)
Exploratory		
Discovery		

Probe unique regions of parameter space

Detection Concept: Atomic X-rays and Pions

GAPS employs three techniques to uniquely identify Antideuterons with enormous background suppression

- 1. TOF and Depth Sensing
- 2. Atomic X-rays
- 3. Charged Pion Multiplicity

Expected Background for a 300 Day Flight

Expected

Basis for

Type of

er enarged i for maniprony	Background	Events	estimate
Antiproton/Antideuteron misidentification	Temporally incoherent X-rays	< 0.003	Scaling from γ- ray telescopes
$\underline{\mu}^{\pi}$	Temporally coherent X-rays	0.001	Measured at GAPS-KEK experiment
	Elastic neutrons	0.002	Monte-Carlo of evaporative & cascade model, KEK limits
44 keV 67keV π,	Secondary- tertiary- atmospheric antideuterons	0.006	Propagate calculated spectra through atmosphere to instrument
$\frac{\pi}{23 \text{ keV}} \pi$	Nuclear γ-rays, π ^o shower photons, internal bremastrahlung	negligible	Data on energy & branching ratio of all possible lines; analytic calc.; GEANT4 sim.

GAPS Detector: Si(Li) & Plastic Scintilator

13 layers composed of Si(Li) wafers

- Relatively low Z material, 2mm thick
- Segmented into 8 strips, ~8cm² each
 - → 3D particle tracking
- Timing: ~50 ns
- Energy resolution:~2 keV
- Proven technology dating from the 1960's
- Dual channel electronics
 5-200 keV: X-rays
 0.1-200 MeV: charged particle

Si(Li) serves as a target for stopping antideuterons as well as an x-ray detector & particle Tracker

Surrounded by Plastic TOF

Identify incoming charged particles

Interesting Feature of GAPS Balloon Experiment

- Very large (~4m²) Si(Li) detector, but simple fabrication dating to 1960's
- 1st balloon flight of cooled pixellated Si(Li) detector
- No pressure vessel
 - (allows more mass for target)
- Very large plastic area (>10m²) with

Heat Dissipation & Power Load	[W]
Heat Dissipation per Si(Li) channel	0.005
Solar and other heat	130
Total Heat Dissipation	400
Power for Si(Li) Detector System	1622
Power for Plastic Detector System	186
Other power requirements	200
Total Power	2008

Mass Breakdown	[kg]
Si(Li) Detectors	204
Si(Li) Electronics, Cables, Support & Cooling	315
Plastic Scintillator	151
PMT, Light-guide, Cables, Electronics, Wrapping Support	190
Gondola, Computers, Telemetry Power, Radiator,	376
Total	1237

Preliminary design estimates are compatible with doing good science on a balloon GAPS Detector Development involves commercial prototype evaluation and in-house flight production

- Prototype flight consisting of ~ 10 commercial Si(Li) + TBD number of in-house fabricated Si(Li)
- Evaluate thick (4mm) SEMIKON Si(Li), Jan 2009
 - Energy resolution
 - Timing
 - Detection efficiency
 - Noise, capacitive cross talk, etc...
- Evaluate flight representative thin (2mm) SEMIKON Si(Li), spring 2009
- Parallel development of flight fabrication techniques & facility

SEMIKON Si(Li) detector

Homemade Si(Li) Detector

Drifting

Etching

nto alt

Cutting

Si(Li) Characteristic Test

A Prototype Flight will provide a Crucial Science & Engineering Demonstration

Balloon Prototype Goals:

- Include ~10 commercial (SEMIKON) and a few of our in-house detectors.
- Demonstrate stable, low noise operation of the Si(Li) with its polymer coating at float altitude & ambient pressure.
- Demonstrate the basic functionality and operation of the TOF system.
 - Demonstrate the Si(Li) cooling approach & deployable sun shades. Verify thermal model.
- Measure incoherent background level in a flight-like configuration.

2011 Prototype flight planned from Hokkaido, Japan

GAPS Development Plan Culminates in a Long-Duration Balloon (LDB) Experiment

1

C Hailey (PI), J Koglin, H Yu (PhD thesis '08), T Aramaki – Columbia F Gahbauer – U. Latvia/Columbia - modeling T Yoshida & H Fuke – JAXA/ISAS – Gondola systems (BESS Antartica) S Boggs – UC Berkeley – Balloon electronics & background simulation R Ong, J Zweerink – UCLA – TOF, Trigger system & instrument simulations F Christensen – DNSC – Coatings Technology, Si(Li) fabrication N Madden (Columbia), D Landis & Semikon GmBH (T Krings) – Si(Li) and detector electronics K Ziock & L Fabris – ORNL – Electronics & ASIC design

Source of Uncertainty

