GAPS Antiproton and Antideuteron Measurement for Indirect Dark Matter Search Charles J. Hailey Columbia University

RTICLE SPEC

GENERAL

Dark Matter 2014 @ UCLA, Feb 26

Evidence for Dark Matter

Galactic Rotation Curve

Gravitational Lens

What is Dark Matter?

DM theory has a previously unrecognized approximate symmetry $N(experiments) \approx N(theories)$

Lots of theories!

- heavy neutrino Axinos Bino Brane world DM CHAMPS Cryptons D-matter Gravitinos Kaluza-Klein Higgsino Light scalars Minimal DM Mirror particles
- **Neutralinos** New symmetry little Higgs Q-balls Photino Self-interacting DM Simpzillas SM neutrinos **Sneutrinos** Sterile neutrinos **SWIMPS** little Higgs Wimpzillas Wino

Lots of experiments!

AMS-2 Genius AMANDA Genino ATIC HESS BESS IceCube CDMSI IGEX **CDMSlite** LHC SuperCDMS LUX **CUORICINO** PAMELA COSME **PICASSO** CoGeNT **PPB-BETS** CRESST-I II SIMPLE DAMA/LIBRA **SNOLAB** DAMA/Nal NAIAD DarkSide XENON ELEGANT V EDELWEISS Fermi-LAT GAPS GEDEON

10/100/1T ZEPLIN SuperK Tevatron VERITAS

Dark matter searches

Collider Search

Missing energy and momentum for DM particle

Direct Search

Indirect Search

- Positron (e⁺):
 PAMELA, Fermi-LAT, ATIC, AMS
- Photon (γ) Fermi-LAT, HESS…
- Neutrino (v): AMANDA, IceCube...
- Antiproton (p) BESS, AMS, PAMELA, GAPS
- Antideuteron (d) GAPS, AMS

GAPS detects atomic X-rays and annihilation products from exotic atoms

background suppression

GAPS project history

2002 (original GAPS) Cubic detector 3 X-rays 2004/2005 **KEK Beam Test** 2006 Multi-layer detector TOF stopping depth X-rays **Pion multiplicity** 2008 Proton multiplicity 2009 dE/dX2012 pGAPS flight Start Si(Li) fabrication 2013 p for light DM search

GAPS science summary

- Antideuterons as DM signatures
 - **no astrophysical background** at low energy
 - **complementary** to direct/indirect searches and collider experiments
 - search for: **light DM**, heavy DM, gravitino DM,

LZP in extra-dimensions theories, (evaporating PBH)

- Antiprotons as DM and PBH signatures
 - **precision flux measurement** at ultra-low energy (E < 0.25 GeV)
 - **complimentary** to direct/indirect searches and collider experiments
 - ~ **10 times more statistics** @ 0.2 GeV, compared to BESS/PAMELA
 - search for: light DM, gravitino DM,

LZP in extra-dimensions theories, evaporating PBH

Expected to launch from Antarctica in 2018/2019

> 1 LDB flight (~35 days) -> precision antiproton flux measurement

~1500 antiprotons in GAPS E < 0.25 GeV, while 30 for BESS, 7 for PAMELA at $E \sim 0.25$ GeV

- 2 LDB flights (~70 days) -> improved antideuteron statistics Antideuteron sensitivity: ~3.0 x 10⁻⁶ [m-² s⁻¹ sr⁻¹ (GeV/n)⁻¹] at E < 0.25 GeV</p>
- > 3 LDB flights (~105 days) -> comparable to AMS-02 (5 year) Antideuteron sensitivity: ~2.0 x 10⁻⁶ $[m^{-2} s^{-1} sr^{-1} (GeV/n)^{-1}]$ at E < 0.25 GeV

GAPS instrument summary

TOF plastic scintillators

- outer TOF: 3.6m x 3.6m, 2m height
- inner TOF: 1.6m x 1.6m, 2m height
 - 1m b/w outer and inner TOFs
 - 500 ps timing resolution
 - 16.5 cm wide plastic paddles
 - PMT on each end

Science weight: ~1700 kg, 34H balloon

Si(Li) detectors

- 10 layers, 1.6m x 1.6m
- layer space: 20 cm
- Si(Li) wafer (~1500 wafers)
 - 4 inch diameter
 - 2.5mm thick wafer
 - 12 x 12 rectangular
- segmented into 4 strips
 → 3D particle tracking
- timing resolution: ~ 100 ns
- energy resolution: 3 keV
- ^{2m} operation temperature: -35 C
 - dual channel electronics
 X-ray: 20 80 keV
 charged particles: 0.1 100 MeV

Cooling system

- oscillating heat pipe (OHP)
- demonstrated in pGAPS

GAPS can help elucidate light DM models

DAMA, CoGeNT, CDMS-II-Si vs. XENON100, LUX

Isospin-violating scenario

suppress DM-target interaction cross-section

- Halo-independent analysis

mass-dependent v_{min} limit due to low energy threshold

- not completely ruled out by XENON100 and LUX
- GAPS offers an approach complementary to direct detection for constraining light DM models

halo-independent, m_{DM} = 7 GeV

isospin-conserving

halo-dependent

isospin-violating

isospinconserving isospinviolating

Nobile et al., 2013

Antideuterons provide clean DM signatures

GAPS can access the light DM parameter space

GAPS antideuteron search also probes gravitino DM and heavy DM models

GAPS precision antiproton flux measurement provides strong constraints on DM and PBH models

Complementary to direct/indirect DM searches and collider experiments for light DM

GAPS antiprotons probe light DM and gravitino DM

Light DM

- in non-universal gaugino model
- good agreement with experimental data
 - uncertainty on propagation model
 - uncertainty on annihilation cross-section
 - different annihilation channels

gravitino DM

- stable in galactic time scale
- small R-parity violation
 - avoid gravitino overproduction

Unique probes for DM in extra-dimensions and evaporating PBHs

LZP

- Lightest Z₃ charged particle
- stable under Z₃ symmetry
- right-handed neutrino

Primordial Black Hole Evaporation

- density fluctuations, phase transitions, collapse of cosmic strings in the early universe
- R < 0.02-0.05 pc⁻³ yr^{-T} (γ , Fermi, EGRET)

Successful prototype (pGAPS) flight in 2002 @ Taiki, JAXA balloon facility in Japan

- First balloon experiment with Si(Li) detectors
- TOF performance test and measure cosmicray proton count rate
- Demonstrate cooling system
 - 6 commercial Si(Li) detectors
 - 3 TOF layers, 50cm x 50cm, ~ 50cm separation

Commercial SEMIKON Si(Li) 4 inch diameter, 2.5mm thick

> TOF paddle with PMT, LG 16.5 cm wide

Vessel for DAQ

Si(Li) detector surrounded by TOF

pGAPS thermal analysis matches experimental data

pGAPS cosmic-ray count rate in good agreement with simulation results

Ready for Si(Li) mass production

Si(Li) fabrication

- requires 1500 Si(Li) detectors
- Li evaporator, UI grinder in the lab
- HF etching in clean room
- computer controlled Li drifting system

Fabrication facility has been set up at Columbia University

Ultrasonic Impact Grinder

Etching in cleanroom

Li drifting station

Li evaporator

Si(Li) fabrication procedure (well-studied since 1960's)

Homemade Si(Li) performance test

Development Plan

- C.J. Hailey (PI), T. Aramaki, N. Madden, K. Mori, K. Perez Columbia University
- R.A. Ong, S.A.I Mognet, J. Zweerink
 - University of California, Los Angeles
- S.E. Boggs
 - University of California, Berkeley
- U
- Appan Aerospace Exploration Agency
- P. von Doetinchem
 - University of Hawaii, Honolulu
- H. Fuke, S. Okazaki, T. Yoshida

Institute of Space & Astronautical Science, Japan Aerospace Exploration Agency

- L. Fabris, K.P. Ziock
 - Oak Ridge National Laboratory

RNI

- F. Gahbauer
 - University of Latvia