

Assumptions for this talk: Dark Matter Exists. (At least some of) It is a WIMP.

A Multimessenger Search

Galactic Center: High flux, astrophysical background. Dwarf Galaxies: Low flux, low/no background.

atmospheric background.

Many pathways, different backgrounds

Antiprotons (p)

Why Antideuterons?

 \rightarrow No kinematic threshold.

Why Antideuterons?

GAPS - General Antiparticle Spectrometer

- * Antinucleons provide an excellent window for dark matter searches.
- * With an almost background free signal they provide a very "clean" window.
- However, existing techniques (rigidity based) have problems:
 - * Energy threshold.
 - * (Anti)proton suppression.
- * Solution:
 - * Exotic atom technique \rightarrow no background.
 - * Antarctic balloon \rightarrow low energy threshold.

Stopping Depth

11

Pion & Proton Production

Annihilation! π 's + p's + stuff

Putting It All Together

Aramaki+15

(It works in simulations too ...)

60 MeV p̄ 4 pions produced

120 MeV d 10 pions produced

antideuteron

 $blue = \overline{p}$ $green = \overline{d}$ white = pion yellow = electron purple = other

Predicted Sensitivity

Status Update

- * NASA funding started 2017.
- * Strong and welcome involvement from INFN joining GAPS.
- * First flight austral summer 2020-21.
- * Now the fun begins:
 - * 1350 silicon detectors.
 - * ~200 ToF paddles (~400 ends to read out).
 - * Trigger & readout electronics.
 - * Cooling.

*

...

* Mechanical design.

- Process developed in partnership with Shimadzu Corp. (Japan).
- * Readout ASIC designed by **INFN**

	High Gain	Low Gain	10 1 144 d
Timing Resolution	100 ns		
Energy Resolution	4 keV	10%	
Energy Range	20 - 80 keV	0.1 - 100 MeV	
Operating Temperature	< -40 °C		
Leakage Current	< 10 nA		

Time of Flight (ToF)

Timing Resolution = $(T_A - T_B)/\sqrt{2}$

Cooling System

Cooling & Mechanical

With a low astrophysical background they have exciting potential for a clean signal.

Scheduled to fly in the austral summer of 2020-21 significant progress has been made.

Antinucleons provide a complementary channel for indirect dark matter searches.

-

GAPS will search for low energy antinucleons and provide the best measurement to date of low energy p.

> The exotic atom technique increases signal purity over rigidity searches.

Pion Production

Number of π/p depend upon nucleon annihilating

X-Rays

dE/dX

Cosmic Rays - Primary Sources

Cosmic Rays - Propagation

- Boron-to-Carbon ratio,
- Radioactive isotopes,
- Diffuse radio & γ-rays

H Leaky Box Model → need size of box and diffusion coefficient

Diffusion Coefficient

- * Principle constraint comes from boron-to-carbon ratio ($\propto H^2/D$).
- H has a strong impact upon relative strength of dark matter signal.
- Typically 3 bounding cases of H, D considered: MIN (H = 1 kpc), MED (4 kpc), MAX (15 kpc).
 - * MIN is now largely excluded using positron data.

Solar Modulation

Cosmic Rays - Secondary Production

30

Why Antarctic Balloon?

ToF

Hamamatsu S13360–6050CS (LCT5-6050)

PMT or SiPM?

Low Energy Antinucleons

Rigidity \propto gyro radius

Coalescence Momentum

Fitting p_0 to data on \overline{d} production

${f Herwig}++~({f tune}) {f CLEO},~{f ALEPH},$	ed) ZEUS
ALICE (pp)	
ZEUS (e^-p)	F—
ALEPH (Z deca	y)
ISR (pp)	
BaBaR (e^+e^-)	⊦
CLEO (Υ decay	
	50 100
	Coalescence momen

pGAPS (2012)

Grasp

anti-³He Sensitivity?

Primordial Black Holes

