The GAPS Experiment: Hunting for Dark Matter with Antideuterons

Kerstin Perez (Columbia University) on behalf of the GAPS collaboration

GAPS and Antideuterons

GAPS will look for DM particles self-annihilating in Galactic Halo to form low-energy antideuterons

K. Perez – Columbia U.

*** AMS: N. Fornengo et al. (2013) arXiv:1306.4171

Antideuteron Searches

MAX

propagation

MFD

600

M_v (GeV)

propagation

800

- Flux uncertainties due to:
 - propagation model up to factor x10 for signal, much less for background!
 - hadronization and coalescence models *factor x0.8-10, depending on annihilation channel*
 - i.e. N. Fornengo et al. (2013) arXiv:1306.4171
 - boost factor $f \approx 1-10$
 - DM halo density up to factor x2
- Analogy to direct search experiments:
 - handful of signal events
 - background dominated
 - long integration times
 - different technologies

Small expected signal flux and multiple uncertainties highlight need for multiple experiments, complementary sensitivities

LDB

200

Energy Phys. 11, 017 (2010).

LDB+

400

Neutralino fluxes from Cui, Mason, and Randall, J. High

1000

100

0.1

Number of D

GAPS Detection Concept

K. Perez – Columbia U.

T. Aramaki et al., http://arxiv.org/abs/1303.3871

GAPS Background Rejection

Combination of TOF, depth-sensing, X-ray, and π /proton detection yield rejection >10⁵

GAPS Detector Design

Plastic scintillator TOF

- high-speed trigger and veto
- 2 m long, 0.5 cm thick
- read out both ends
- ~500 ps timing resolution

Si(Li) targets/detectors

- X-ray identification, dE/dx, stopping depth, and shower particle multiplicity
- 2.5 mm thick, 4" (or 2") diameter
- 3 keV resolution for X-rays

K. Perez - Columbia U.

pGAPS: a Prototype GAPS Flight

pGAPS: a Prototype GAPS Flight

K. Perez - Columbia U.

pGAPS Cooling Results

Cooling performance confirms thermal model

With proper pointing, cooling system allows optimal Si(Li) operation
Oscillating heat pipe (OHP) system

also validated with thermal simulation

pGAPS Detector Results

- GAPS will use 2875 4" Si(Li) detectors (or 11500 2" detectors)
- 2"-diameter detectors being produced at Columbia U. using simple fabrication scheme
- Successfully drifted diameters from 1" to 2" with >90% yield, both 1.25 mm (prototype) and 2.5 mm thick
- Leakage current <10 nA at -35 C
- Confirmed performance with cosmic rays (MIPs) and Am-241 source (X-rays)
- 4" detector development underway!

Onwards to GAPS!

• Exciting time for antideuteron searches!

- If AMS sees signal, GAPS will verify and strengthen confidence
- If AMS reports limit, GAPS prepared to search deeper
 - Lower energies and different detection technique

Development ongoing!

- 4" Si(Li) detector development and facility for batch processing of all flight detectors
- increase TOF paddle length and verify mechanical integrity, signal size, and timing performance
- based on existing prototypes, develop ASICs for both Si(Li) and TOF systems and a custom pre-amplifier for Si(Li)

Building on experience from successful pGAPS and Si(Li) development, plan for an initial GAPS flight in winter 2017/2018

