Antideuterons as an Indirect Dark Matter Signature: **Design and Preparation**

for a Balloon-born GAPS Experiment

Jason Koglin Columbia Astrophysics Laboratory

For the GAPS Collaboration

The General Antiparticle Spectrometer (GAPS) exploits low energy antideuterons produced in neutralino-neutralino annihilations as an indirect dark matter (DM) signature that is effectively free from background. When an antiparticle is captured by a target material, it forms exotic atom in an excited state which quickly decays by emitting X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. The GAPS method of using this combined X-ray and pion signature to uniquely identify antiparticles has been verified through accelerator testing of a prototype detector. I will describe the design of a balloon-born GAPS experiment that complements existing and planned direct DM searches as well as other indirect techniques, probing a different, and often unique, region of parameter space in a variety of proposed DM models. I will also outline the steps that we are taking to build a GAPS instrument and execute multiple long duration balloon flights.

Funding provided through NASA APRA grants NAG5-5393 & NNG06WC06G

Low energy, neutralino-neutralino produced antideuterons are near background free

Significant antideuteron flux at the earth (with propagation & solar modulation) first pointed out by Donato et al. 2000

- Primary component: \rightarrow neutralino annihilation $X + X \rightarrow D + \dots$
- Secondary component: \rightarrow spallation $p+H \rightarrow p+H+\overline{D}+...$ $p+He \rightarrow p+He+D+...$
- GAPS is essentially a background free experiment
- GAPS represents a major improvement over the state of the art
- GAPS has outstanding discovery potential for a Jason Koglin – The Hunt for Dark Matter, Fermilab Symposium – May 11, 2007

SUSY discovery potential for an antideuteron experiment is similar to direct detection methods

There are over 20 current or planned direct detection experiments to probe SUSY DM

A balloon GAPS antideuteron search offers SUSY parameter space complementarity to direct detection, underground searches

Note: DM theory has an approximate symmetry:

N(experiments) ≈ N(theories)

ANAIS ArDM CDMSII **CUORICINO** COSME CRESST DAMA DMRC DRIFT **ELEGANT V EDELWEISS EURECA** GEDEON GENIUS Genino **GERDA** HDMS IGEX LIBRA NAIAD PICASSO SIMPLE **SuperCDMS** SuperK WARP **XENON** ZEPLIN

4th generation heavy neutrino Axinos Axions Bino Brane world DM CHAMPS Cryptons D-matter Gravitinos Kaluza-Klein Higgsino Light scalars Minimal DM Mirror particles **Neutralinos** New symmetry little Higgs Q-balls Photino Self-interacting DM Simpzillas SM neutrinos **Sneutrinos** Sterile neutrinos **SWIMPS** Theory space little Higgs **Wimpzillas** Wino

Si(Li) Wafers will be hexagonally packed into detector planes & surrounded by segmented Plastic TOF

GAPS employs three techniques to uniquely identify antideuterons with enormous background suppression

Si(Li) Serves a Target for Stopping Antideuterons as well as an X-ray Detector & Particle Tracker

- Relatively low Z provides:

 → good compromise between
 X-ray escape and detection
 → Low internal background.
- Excellent timing (50 ns) & energy resolution (2 keV much better than NaI, but modest for Si)
 → 2 X-ray coincidence sufficient (previous designs used 3 X-rays)
- Relatively course pixels (8 cm²)
 → Keeps channel count low but still provides for low pileup.
- Dual channel electronics (5-200 keV & 0.1-200 MeV)
 → Good charged particle tracking for depth sensing & annihilation product tracking
- Proven technology dating to 60's

 Modular approach for ease of in-field assembly

We have tested a prototype detector that exceeds our requirements – fabrication scale-up challenge remains

Design based on tested 4" prototype Si(Li) detector. We are studying 5"-6" detectors to ease implementation.

Heat Dissipation & Power Load	[W]
Heat Dissipation per Si(Li) channel	0.005
Solar and other heat	130
Total Heat Dissipation	400
Power for Si(Li) Detector System	1622
Power for Plastic Detector System	186
Other power requirements	200
Total Power	2008

Mass Breakdown	[kg]
Si(Li) Detectors	204
Si(Li) Electronics, Cables, Support & Cooling	315
Plastic Scintillator	151
PMT, Light-guide, Cables, Electronics, Wrapping Support	190
Gondola, Computers, Telemetry Power, Radiator,	376
Total	1237

A Prototype Flight will Provide a Crucial Science & Engineering Demonstration

Balloon Prototype Goals:

- Demonstrate stable, low noise operation of the Si(Li) with its polymer coating at float altitude & ambient pressure.
- Demonstrate the Si(Li) cooling approach & deployable sun shades. Verify thermal model.
- Measure incoherent background level in a flightlike configuration.

2009 Flight planned from Japan with ISIS/JAXA participation

GAPS Development Plan Culminates in a Long-Duration Balloon (LDB) Experiment

- Flight proposal submitted to NASA in Spring 2007
- Flight of GAPS prototype from Japan in 2009
- LDB GAPS flight from Antarctica in 2013
- Experiment design will be ultra long duration (ULDB) capable to exploit such a launch if it becomes available; flight duration >100 days
- Growing collaboration & adding expertise to execute this plan

Primary GAPS Science Goals

- Execute deep searches for SUSY & UED DM
- Complementary with direct and other indirect measurements
- Measure antideuterons from evaporating PBH's
- Potentially constrain inflation temperature
- Measure 10⁴-10⁵ antiprotons <0.3 GeV (BESS-polar measured 26 @ <0.3 GeV)
- Perform both DM and cosmic-ray physics

Low-Energy Antiproton Spectroscopy

AMS98

BESS95+97

BESS98 CAPRICE98

MASS91

IMAX92

BESS 00 T CAPRICE94

Background from normal

Signal from neutralino

secondary production

Kinetic Energy (GeV)

Antiproton flux (particle / (m² sr s GeV)) a, a, a