

An Indirect Dark Matter Search Using Cosmic Ray Antiparticles with GAPS

Alex Lowell UCSD on behalf of the GAPS Collaboration

MĀNOA

Indirect Searches for Dark Matter in Cosmic Rays

$e^+, \bar{p}, \bar{d}, {}^3\overline{\mathrm{He}}, \dots$

- Indirect searches complement direct
- and collider searches for DM
- DM particles in the Galactic DM halo annihilate or decay and produce SM particles
- Gammas and neutrinos point back to the source
- Charged SM particles undergo complex transport through ISM and Galactic/solar B fields before arriving at Earth

Indirect Searches for Dark Matter in Cosmic Rays

Positron excess consistent with $\sim 1 \text{ TeV/c}^2 \text{ DM}$, but can be explained by a local pulsar contribution or SNR acceleration

Possible excess in AMS antiproton spectrum favoring ~10 GeV/c² DM, although analyses are sensitive to large uncertainties in CR propagation

Fermi GeV excess from GC consistent with ~30 GeV/c² DM, but can be explained with unresolved pulsar population

Antideuterons not yet detected in CRs
Very low expected astrophysical background

Cosmic Ray Antideuterons as Probes of Dark Matter p, n, π, \dots

 $\overline{q}, \overline{g}$

h, W, Z

Spallation

Hadronization

Beyond the

Standard

Model

Physics

$\overline{l} \begin{array}{l} { m from \ CR/ISM} & p \ ({ m CR})^{rac{1}{2}} \\ { m interactions} & H \ ({ m ISM})^{rac{1}{2}} \end{array}$

• Background processes inefficient at producing < 1 GeV/n antideuterons

 $ar{p},\,ar{n}$

• Well-motivated WIMP DM scenarios predict an antideuteron signal which can exceed the background by 10^2 - 10^3 at low energies

 $\overline{p}, \, \overline{n}$

 p, n, \ldots

 \bar{p}, \bar{n}

Coalescence

 \bar{p}, \bar{n}

Coalescence

• Low energy antideuterons are an important, unexplored probe of DM physics!

The General Antiparticle Spectrometer (GAPS)

Plastic scintillator paddle (x202)

GAPS gondola (mass: 1700 kg, power: 1400 W)

- GAPS is a balloon borne detector of cosmic ray antiparticles
- First experiment optimized for low energy antideuterons (<0.25 GeV/n)
- *Exotic atom* technique for particle detection and identification
- Capable of precision antiproton measurement in unexplored
- Antihelium detection capability

Si(Li) Detector (x1000)

Detector systems:

- Time of Flight (TOF): Particle velocity, dE/dx, tracking, incidence angle, trigger
- Si(Li) Tracker: Tracking, dE/dx, stopping depth, X-ray spectroscopy \bullet

Antiparticle strikes inner and outer TOF, and stops in tracker
 → TOF vs. stopping depth for antiparticle identification

- Antiparticle strikes inner and outer TOF, and stops in tracker
 → TOF vs. stopping depth for antiparticle identification
- Stopped antiparticle forms excited exotic atom with Si nucleus

- Antiparticle strikes inner and outer TOF, and stops in tracker
 → TOF vs. stopping depth for antiparticle identification
- Stopped antiparticle forms excited exotic atom with Si nucleus
 Deexcitation X-ray energies discern between antiparticle species

- Antiparticle strikes inner and outer TOF, and stops in tracker
 → TOF vs. stopping depth for antiparticle identification
- Stopped antiparticle forms excited exotic atom with Si nucleus
 Deexcitation X-ray energies discern between antiparticle species
- Antinucleon annihilation produces pions and protons (tracks)
 - → Pion and proton multiplicities further distinguish between antiparticle species

Exotic atom technique validated at KEK Aramaki et al. 2013, arXiv:1303.3871

62%

60%

 $> 5\pi^{\pm}$

> 2p

7%

5%

 $> 5\pi^{\pm}$

> 2p

GAPS Antideuteron Sensitivity

- Antiprotons are the dominant background for the antideuteron measurement
- 1 (3) LDB flight 99% CL sensitivity: 4.5 (1.5) x 10^{-6} m⁻²s⁻¹sr⁻¹ (GeV/n)⁻¹
- Depending on DM scenario, up to ~10 antideuterons may be detected throughout 3 LDB flights
- GAPS will also be sensitive to antihelium, sensitivity analysis is ongoing

GAPS Antiproton Measurement

- In just 1 LDB flight, GAPS will detect > 1000 antiprotons in an unexplored energy range, constraining light (< 10 GeV mass) DM models
- Antiprotons will be used to validate the exotic atom detection scheme in flight
- Bonus: GAPS will set leading limits on primordial black hole evaporation

Si(Li) Detector System: Design and Progress

- + 10 cm x 0.25 cm $\,$ Si(Li) detectors developed with Shimadzu
 - → Low cost production scheme
 - → 4 strip design meets 4 keV FWHM energy resolution requirement for X-ray identification
- 32 channel readout ASIC
 - → Integrated low noise preamplifer
 - → Dynamic range compression: 20 keV to 50 MeV

Coolina

section

➔ Design in final stages of validation

Energy [keV] Shimadzu Si(Li) detector line width measurement

60

20

Okazaki et al. 2018 Applied Thermal Engineering 141

TOF System: Design and Progress

- EJ-200 plastic scintillator paddles
 - → 16 cm by 0.6 cm, two lengths: 1.6 m and 1.8 m
 - → SiPM readout
 - → Traces digitized with DRS4 ASIC
 - → Better than 500 ps timing resolution demonstrated
- Trigger design
 - → TOF system provides trigger for tracker
 - → Trigger accepts ~80% of antinuclei while reducing proton/alpha rate by 10³-10⁴

End to end TOF paddle time difference measurement

DRS4 board (27 total)

Simulations

3D viewer

- Comprehensive Geant4 based simulation framework developed for GAPS
- Realistic mass model closely following ongoing mechanical design
- Simulation framework continues to be used successfully to: \bullet
 - Study particle identification and track reconstruction algorithms
 - Design and validate trigger concept
 - Optimize geometrical configuration
 - Compute sensitivities, rejection power, etc. \bullet

GAPS Balloon Campaigns

- 2012 prototype GAPS flight with JAXA from Taiki, Japan
 - →Successful 6 hour flight with background measurement
 - →Verified functioning of Si(Li) and TOF prototypes at 33 km float altitude
 - \rightarrow OHP prototype and thermal model also validated

 GAPS is funded (NASA) and on track for 1st LDB flight from McMurdo Station, Antarctica in 2020/2021

→Antideuteron sensitivity will exceed BESS limit by ~1.5 orders of magnitude

- →Precision antiproton spectrum measurement with >1000 antiprotons
- Two more follow up flights are planned for the mid 2020s to further science goals

Summary

- Antideuterons are a promising avenue for indirect DM searches
- GAPS, the first instrument optimized for low energy antideuterons, is well poised to detect or set deeper limits on the cosmic antideuteron flux
- Antiproton and antihelium measurements further the GAPS science reach
- Si(Li) and TOF detector systems are at a mature stage, full scale production to start promptly
- GAPS is on track for an LDB flight in 2020/2021 from Antarctica, with follow-up flights planned for the mid 2020s

GAPS Collaboration