Antideuterons as an Indirect Dark Matter Signature:

Design and Preparation

for a Balloon-born GAPS Experiment

Jason Koglin
Columbia Astrophysics Laboratory

For the GAPS Collaboration

The General Antiparticle Spectrometer (GAPS) exploits low energy antideuterons produced in neutralino-neutralino annihilations as an indirect dark matter (DM) signature that is effectively free from background. When an antiparticle is captured by a target material, it forms an exotic atom in an excited state which quickly decays by emitting X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. We have successfully demonstrated the GAPS method in an accelerator environment and are currently planning a prototype flight from Japan for 2009. This will lead to a long duration balloon (LDB) mission that will complement existing and planned direct DM searches as well as other indirect techniques, probing a different, and often unique, region of parameter space in a variety of proposed DM models. Planes of coarsely pixilated Si(Li) detectors form the heart of GAPS flight detector, providing both high X-ray resolution and good particle tracking. We will describe the proto-flight mission that will verify the performance of our Si(Li) detectors and cooling system in a flight-like configuration. We also will outline the LDB science payload design.

Funding provided through NASA APRA grants NAG5-5393 & NNG06WC06G

Antideuterons as an Indirect Dark Matter Signature: **Design and Preparation** for a Balloon-born GAPS Experiment

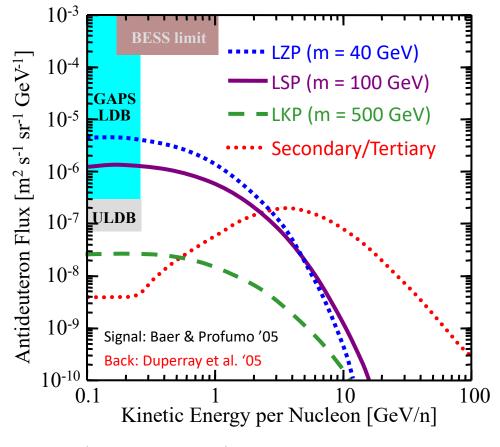
T. Aramaki, C.J. Hailey, J.E. Koglin, N. Madden, K. Mori, H.T. Yu – Columbia University

S.E. Boggs – University of California, Berkeley

W.W. Craig – Lawrence Livermore National Laboratory

H. Fuke, T. Yoshida – Institute of Space & Astronautical Science, Japan Aerospace Exploration Agency

F. Gahbauer – University of Latvia

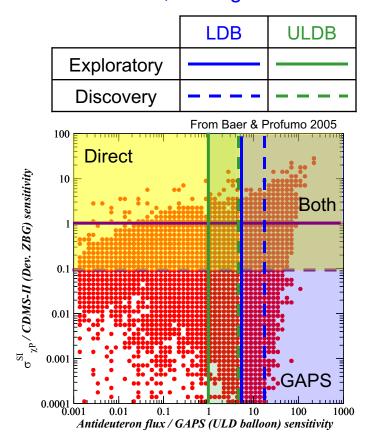


R.A. Ong – University of California, Los Angeles

RNL K.P. Ziock – Oak Ridge National Laboratory

Low energy, neutralino-neutralino produced antideuterons are near background free

Significant antideuteron flux at the earth (with propagation & solar modulation) first pointed out by Donato et al. 2000



- Primary component:
 → neutralino annihilation
 X+X → D + ...
- Secondary component:
 → spallation
 p+H → p+H+D+...
 p+He → p+He+D+...
- GAPS is essentially a background free experiment
- GAPS represents a major improvement over the state of the art
- GAPS has outstanding discovery potential for a variety of DM models

SUSY discovery potential for an antideuteron experiment is similar to direct detection methods

There are over 20 current or planned direct detection experiments to probe SUSY DM

A balloon GAPS antideuteron search offers SUSY parameter space complementarity to direct detection, underground searches

Note: DM theory has an approximate symmetry:

$N(experiments) \approx N(theories)$

ANAIS 4th generation heavy neutrino

ArDM Axinos
CDMSII Axions
CUORICINO Bino

COSME Brane world DM

CRESST CHAMPS DAMA Cryptons **DMRC** D-matter **DRIFT** Gravitinos **ELEGANT V** Kaluza-Klein **FDFLWFISS** Higgsino **EURECA** Light scalars **GEDEON** Minimal DM **GENIUS** Mirror particles Genino **Neutralinos**

GERDA New symmetry little Higgs

HDMS Q-balls IGEX Photino

LIBRA Self-interacting DM

NAIAD Simpzillas
PICASSO SM neutrinos
SIMPLE Sneutrinos
SuperCDMS Sterile neutrinos

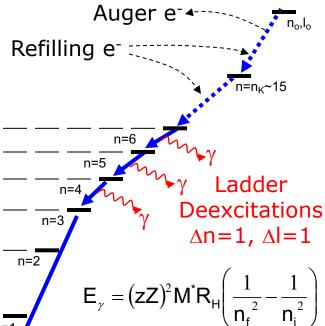
SuperK SWIMPS

WARP Theory space little Higgs

XENON Wimpzillas ZEPLIN Wino

44 keV

A time of flight (TOF) system tags candidate events and records velocity

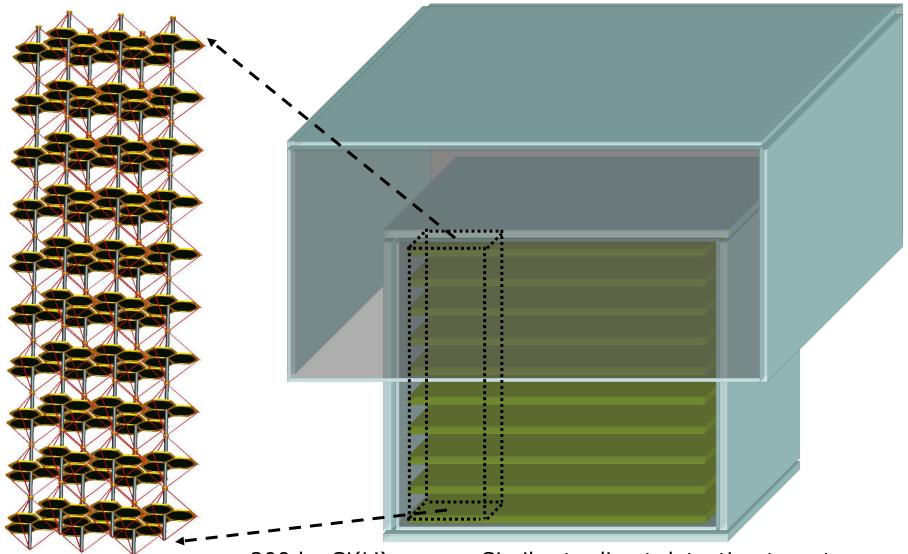

The antiparticle slows down & stops in a target material, forming an excited exotic atom with near unity probability

Deexcitation X-rays provide signature

Pions from annihilation provide added background suppression

Antiprotonic yields measured at KEK in 2004 & 2005 in various targets.

 π^+


Nuclear Annihilation

Jason Koglin - TAUP - September 11, 2007

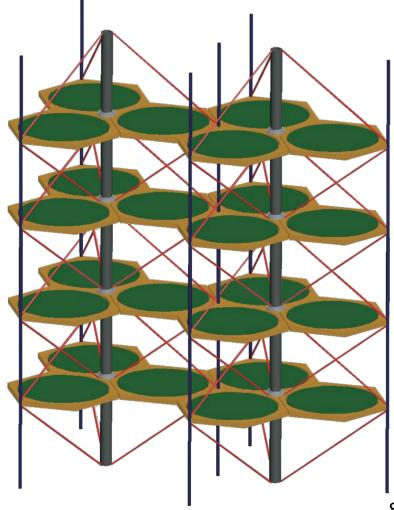
30 keV

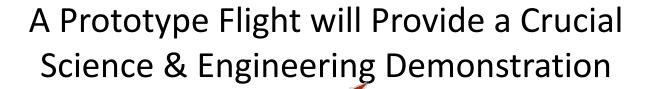
Si(Li) Wafers will be hexagonally packed into detector planes & surrounded by segmented Plastic TOF

~200 kg Si(Li) mass – Similar to direct detection target mass

GAPS employs three techniques to uniquely identify antideuterons with enormous background suppression

1. Atomic X-rays 2. TOF and Depth Sensing **Exploratory** 3. Charged Pion Multiplicity **TOF TOF** 35 ke\ 44 ke\ 23 keV 30 keV

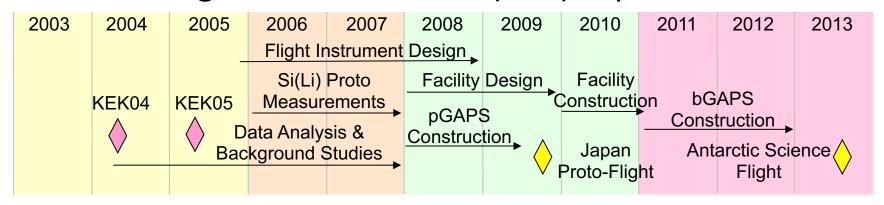

Expected Background for a 300 Day Flight


Type of Background	Expected Events	Basis for estimate
Temporally incoherent X-rays	< 0.003	Scaling from γ- ray telescopes
Temporally coherent X-rays	0.001	Measured at GAPS-KEK experiment
Elastic neutrons	0.002	Monte-Carlo of evaporative & cascade model, KEK limits
Secondary- tertiary- atmospheric antideuterons	0.006	Propagate calculated spectra through atmosphere to instrument
Nuclear γ-rays, π° shower photons, internal bremastrahlung	negligible	Data on energy & branching ratio of all possible lines; analytic calc.; GEANT4 sim.
Exploration trigger	0.2 (total)	Analytic & Monte- Carlo Simulations

Si(Li) Serves a Target for Stopping Antideuterons as well as an X-ray Detector & Particle Tracker

- Relatively low Z provides:
 → good compromise between
 X-ray escape and detection
 → Low internal background.
- Excellent timing (50 ns) & energy resolution (2 keV − much better than NaI, but modest for Si)
 → 2 X-ray coincidence sufficient (previous designs used 3 X-rays)
- Relatively course pixels (8 cm²)
 → Keeps channel count low but still provides for low pileup.
- Dual channel electronics
 (5-200 keV & 0.1-200 MeV)
 → Good charged particle tracking
 for depth sensing & annihilation
 product tracking
- Proven technology dating to 60's

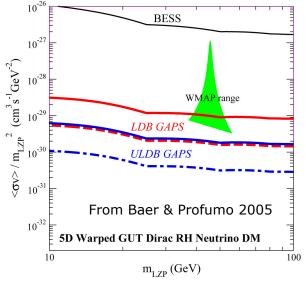
 Modular approach for ease of in-field assembly



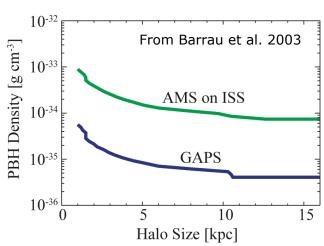
- Demonstrate stable, low noise operation of the Si(Li) with its polymer coating at float altitude & ambient pressure.
- Demonstrate the Si(Li) cooling approach & deployable sun shades. Verify thermal model.
- Measure incoherent background level in a flightlike configuration.

2009 Flight planned from Japan with ISIS/JAXA participation

GAPS Development Plan Culminates in a Long-Duration Balloon (LDB) Experiment



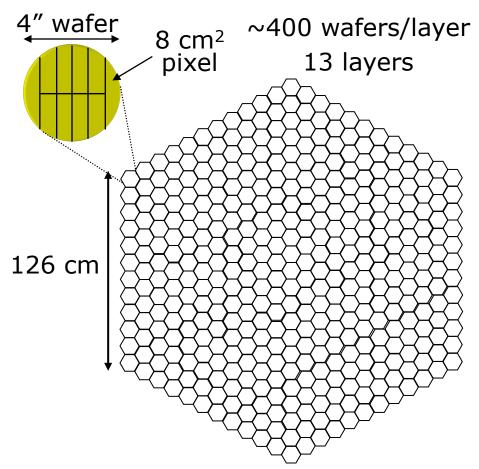
- Flight of GAPS prototype from Japan in 2009
- Long Duration Balloon (LDB) GAPS flight from Antarctica in 2013
- Experiment design will be Ultra Long Duration (ULDB) capable to exploit such a launch if it becomes available; flight duration >100 days



Primary GAPS Science Goals

Antideuteron Dark Matter Signature

Primordial Black Holes


- Execute deep searches for SUSY & UED DM
- Complementary with direct and other indirect measurements
- Measure antideuterons from evaporating PBH's
- Potentially constrain inflation temperature

Low-Energy Antiproton Spectroscopy

- Measure 10⁴-10⁵
 antiprotons <0.3 GeV
 (BESS-polar measured 26 @ <0.3 GeV)
- Perform both DM and cosmic-ray physics

We have tested a prototype detector that exceeds our requirements – fabrication scale-up challenge remains

Design based on tested 4" prototype Si(Li) detector. We are studying 5"-6" detectors to ease implementation.

Heat Dissipation & Power Load	[W]
Heat Dissipation per Si(Li) channel	0.005
Solar and other heat	130
Total Heat Dissipation	400
Power for Si(Li) Detector System	1622
Power for Plastic Detector System	186
Other power requirements	200
Total Power	2008

Mass Breakdown	[kg]
Si(Li) Detectors	204
Si(Li) Electronics, Cables, Support & Cooling	315
Plastic Scintillator	151
PMT, Light-guide, Cables, Electronics, Wrapping Support	190
Gondola, Computers, Telemetry Power, Radiator,	376
Total	1237